Regular Values:
| Angle θ | sin(θ) | cos(θ) | tan(θ) |
|---|
| 0 | 0 | 1 | 0 |
| 6π | 21 | 213 | 313 |
| 4π | 212 | 212 | 1 |
| 3π | 213 | 21 | 3 |
| 2π | 1 | 0 | 1 |
Matching Compositions:
arcsin(sin(x))=x and sin(arcsin(x))=x
arccos(cos(x))=x and cos(arccos(x))=x
arctan(tan(x))=x and tan(arctan(x))=x
Example:
arctan(tan(10))=10−3π
Non-matching Compositions:
(Method 1) Using sin2(θ)+cos2(θ)=1
sin(arccos(x))=?
sin2(arccos(x))+cos2(arccos(x))=1 -⇒ Use the Pythagorean Identity
sin2(arccos(x))+x2=1
sin2(arccos(x))=1−x2 -⇒ Take the square root.
sin(arccos(x))=±1−x2
sin(arccos(x))=1−x2
Non-matching Compositions:
(Method 2) Using Triangles
cos(arctan(x))=?
θ=arctan(x)
tan(θ)=x
cos(θ)=1+x21