Integral Over Polar Rectangle
Theorem
If the domain equals
in polar coordinates, then
where
Integral Over More General Region
Theorem
If the domain equals
in polar coordinates, then
May 09, 20251 min read
Theorem
If the domain equals
D={(r,θ)∣0≤a≤r≤b,α≤θ≤β,0≤β−α≤2π}
in polar coordinates, then
∬Df(x,y)dA=∫αβ∫abf(rcos(θ),rsin(θ))rdrdθ
where
dA=rdrdθ
x=rcos(θ)
y=rsin(θ)
Theorem
If the domain equals
D={(r,θ)∣0≤h1(θ)≤r≤h2(θ),α≤θ≤β,0≤β−α≤2π}
in polar coordinates, then
∬Df(x,y)dA=∫αβ∫h1(θ)h2(θ)f(rcos(θ),rsin(θ))rdrdθ